
The Atomik Microkernel API Reference, version 0.1 august 2014 (English)

Atomik Kernel API
Standard l ibrary functions
As Atomik is the lowest level multi-platform software in the operating system, it has to define its 
own types and libraries from scratch. Although many functions and types can be found in the 
user-level standard C library, most of them are particularized to the microkernel context.

The following document describes the standard library functions that can be used by microkernel 
code.

Structures

#include <misc/vkprintf.h>

struct vkprintf_stream
{
  memsize_t counter;
  void *opaque;
  
  int (*putchar) (struct vkprintf_stream *, char);
  int (*puts) (struct vkprintf_stream *, const char *);
};

Describes the output stream operations used by vkputchar, vkputs and vkprintf for abstract 
formatted output. counter contains the number of bytes correctly sent to the stream and opaque 
is a pointer with private data to be used by the implementation.

The output stream operations are implemented by the functions pointed by putchar and puts. 
The only mandatory function to be defined is putchar, which receives the stream (and thus, its 
private data) and the character to be sent and returns 0 if the operation was performed correctly 
or non-zero on error.

The pointer puts is optional and, if defined, it will be used to output strings instead of repeatedly 
calling putchar. The function shall return the number of bytes correctly sent to the stream. If the 
implementation doesn't provide a puts operation, it must be set to NULL.



The Atomik Microkernel API Reference, version 0.1 august 2014 (English)

Functions

#include <string.h>

size_t strlen (const char *s);

Returns the number of bytes starting from s before the first null character ('\0') is found. 
Equivalent to the strlen function found in the standard userspace C library.

Reentrante :  yes
Thread-safe :  no
Interrupt-safe  :  yes

#include <string.h>

int strcmp (const char *a, const char *b);

Compares two strings pointed by a and b until the first null character is found, returning 0 if both 
strings are equal, 1 if b has a character whose ASCII code is bigger than the character in the same 
position in a and -1 otherwise.

Reentrante :  yes
Thread-safe :  no
Interrupt-safe  :  yes

#include <string.h>

int strncmp (const char *a, const char *b, size_t n);

Same as strncmp, but limits the search of the first null byte to n characters max.

Reentrante :  yes
Thread-safe :  no
Interrupt-safe  :  yes



The Atomik Microkernel API Reference, version 0.1 august 2014 (English)

#include <string.h>

char* strcpy (char *dest, const char *orig);

Copies the string pointed by orig to the location pointed by dest until the first null byte in orig 
is found, which is copied aswell. This function is inherently dangerous as it cannot 
guess the size of the destination buffer dest and can lead to buffer overflows . 

Reentrante :  yes
Thread-safe :  no
Interrupt-safe  :  yes

#include <string.h>

char* strncpy (char *dest, const char *orig, size_t n);

Same as strcpy, but limits the copy up to n bytes. Note that if the null byte is not found within 
the first n bytes, the resulting string in dest won't be properly finished. The programmer must 
take this situation into account when treating the stored string as an ASCIIZ string.

Reentrante :  yes
Thread-safe :  no
Interrupt-safe  :  yes

#include <string.h>

char* strchr (const char *dest, int c);

Returns the pointer of the first occurrence of character c in the string pointed by dest until the 
first null byte is found.

Reentrante :  yes
Thread-safe :  no
Interrupt-safe  :  yes



The Atomik Microkernel API Reference, version 0.1 august 2014 (English)

#include <string.h>

int memcmp (const char *a, const char *b, size_t n);

Compares the first n bytes of memory regions pointed by a and b, returning 0 if both regions are 
equal, 1 if a byte found in b is bigger in absolute value than the byte in the same position in a, 
and -1 otherwise.

Reentrante :  yes
Thread-safe :  no
Interrupt-safe  :  yes

#include <string.h>

void* memcpy (void *dest, const void *orig, size_t n);

Copies the first n bytes pointed by orig to the memory location pointed by dest, and returns the 
pointer dest. This function doesn't support overlapping. 

Reentrante :  yes
Thread-safe :  no
Interrupt-safe  :  yes

 
#include <string.h>

void* memset (void *dest, int c, size_t n);

Fills the n first bytes pointed by dest with the byte c, and returns the pointer dest. Useful 
when initializing buffers.

Reentrante :  yes
Thread-safe :  no
Interrupt-safe  :  yes



The Atomik Microkernel API Reference, version 0.1 august 2014 (English)

#include <string.h>

void* memcpy (void *dest, const void *orig, size_t n);

Copies the first n bytes pointed by orig to the memory location pointed by dest, and returns the 
pointer dest. 

Reentrante :  yes
Thread-safe :  no
Interrupt-safe  :  yes

#include <misc/vkprintf.h>

void vkputchar (struct vkprintf_stream *stream, char c);

Sends the character c to the stream described by stream. This function will use stream->putchar 
to send the character and increment the byte counter if operation was performed correctly.

Reentrante :  yes
Thread-safe :  no
Interrupt-safe  :  yes

#include <misc/vkprintf.h>

void vkputs (struct vkprintf_stream *stream, const char *s);

Sends the string s to the stream described by stream. This function will try to use stream->puts 
if defined or stream->putchar repeatedly otherwise. The byte counter is incremented accordingly.

Reentrante :  yes
Thread-safe :  no
Interrupt-safe  :  yes



The Atomik Microkernel API Reference, version 0.1 august 2014 (English)

#include <misc/vkprintf.h>

void vkprintf (struct vkprintf_stream *stream, const char *fmt, 
...);

Formatted output to the stream described by stream. This function expect a printf-like format 
string in fmt, taking arguments from the variable argument list as usual. The supported formats by 
vkprintf are:

Format Argument type Description Examples

%d int Decimal representation of argument -263
0
22

%h uint32_t Decimal representation of argument as a 
memory size with a unit suffix. The value is 
divided to be fit the biggest unit represented 
(for instance, 65536  will be represented as 
64K)

0b
450M
23K
2G

%H uint32_t Same as %h , but units are shown as a string 
instead of a single-character suffix.

0 bytes
450 MiB
23 KiB
2 GiB

%b unsigned int Hexadecimal representation of the least 
significant 8 bits of the argument, lower case.

00
7f
22
ac

%B unsigned int Hexadecimal representation of the least 
significant 8 bits of the argument, upper case.

00
7F
22
AC

%x unsigned int Hexadecimal representation of the argument, 
lower case.

0
f0802a7f
22
ffff9eac

%X unsigned int Hexadecimal representation of the argument, 
upper case.

0
F0802A7F
22
FFFF9EAC

%w unsigned int Hexadecimal representation of the least 
significant 32 bits of the argument, lower case 
with a separator.

0000:0000
f080:2a7f
0000:0022
ffff:9eac

%W unsigned int Hexadecimal representation of the least 0000:0000



The Atomik Microkernel API Reference, version 0.1 august 2014 (English)

significant 32 bits of the argument, lower case 
with a separator.

F080:2A7F
0000:0022
FFFF:9EAC

%o unsigned int Octal representation of the argument. 0
712
644
213

%y unsigned int Hexadecimal representation of the least 
significant 32 bits of the argument, lower case.

00000000
f0802a7f
00000022
ffff9eac

%Y unsigned int Hexadecimal representation of the least 
significant 32 bits of the argument, lower case.

00000000
F0802A7F
00000022
FFFF9EAC

%c unsigned int ASCII representation of the byte given as 
argument

c
A
7
_

%C uint32_t Representation of CPU flags. Architecture 
dependant.

C--ZST--ONR-----
------I---------

%p void * Hexadecimal representation of a pointer (null)
0x8048000
0xd0000000
0x7af

%s char * Representation of the string pointed by the 
argument

(any string is 
possible)

%% (none) Character '%', used to avoid conflicts with other 
format strings. Doesn't pop any argument from 
the argument list.

%

Reentrante :  yes
Thread-safe :  no
Interrupt-safe  :  yes


